Tap the blue circles to see an explanation.
$$ \begin{aligned}(x^2+3x-4)(2x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^3+3x^2+6x^2+9x-8x-12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^3+9x^2+x-12\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x^2+3x-4}\right) $ by each term in $ \left( 2x+3\right) $. $$ \left( \color{blue}{x^2+3x-4}\right) \cdot \left( 2x+3\right) = 2x^3+3x^2+6x^2+9x-8x-12 $$ |
② | Combine like terms: $$ 2x^3+ \color{blue}{3x^2} + \color{blue}{6x^2} + \color{red}{9x} \color{red}{-8x} -12 = 2x^3+ \color{blue}{9x^2} + \color{red}{x} -12 $$ |