Tap the blue circles to see an explanation.
$$ \begin{aligned}(x^2+3)(7x^2-2x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}7x^4-2x^3+x^2+21x^2-6x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}7x^4-2x^3+22x^2-6x+3\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x^2+3}\right) $ by each term in $ \left( 7x^2-2x+1\right) $. $$ \left( \color{blue}{x^2+3}\right) \cdot \left( 7x^2-2x+1\right) = 7x^4-2x^3+x^2+21x^2-6x+3 $$ |
② | Combine like terms: $$ 7x^4-2x^3+ \color{blue}{x^2} + \color{blue}{21x^2} -6x+3 = 7x^4-2x^3+ \color{blue}{22x^2} -6x+3 $$ |