Tap the blue circles to see an explanation.
$$ \begin{aligned}(x^2+2x-4)(6x+7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x^3+7x^2+12x^2+14x-24x-28 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x^3+19x^2-10x-28\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x^2+2x-4}\right) $ by each term in $ \left( 6x+7\right) $. $$ \left( \color{blue}{x^2+2x-4}\right) \cdot \left( 6x+7\right) = 6x^3+7x^2+12x^2+14x-24x-28 $$ |
② | Combine like terms: $$ 6x^3+ \color{blue}{7x^2} + \color{blue}{12x^2} + \color{red}{14x} \color{red}{-24x} -28 = 6x^3+ \color{blue}{19x^2} \color{red}{-10x} -28 $$ |