Tap the blue circles to see an explanation.
$$ \begin{aligned}(x^2-40x+396)(x^2-22x+121)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^4-62x^3+1397x^2-13552x+47916\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x^2-40x+396}\right) $ by each term in $ \left( x^2-22x+121\right) $. $$ \left( \color{blue}{x^2-40x+396}\right) \cdot \left( x^2-22x+121\right) = \\ = x^4-22x^3+121x^2-40x^3+880x^2-4840x+396x^2-8712x+47916 $$ |
② | Combine like terms: $$ x^4 \color{blue}{-22x^3} + \color{red}{121x^2} \color{blue}{-40x^3} + \color{green}{880x^2} \color{orange}{-4840x} + \color{green}{396x^2} \color{orange}{-8712x} +47916 = \\ = x^4 \color{blue}{-62x^3} + \color{green}{1397x^2} \color{orange}{-13552x} +47916 $$ |