Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{x^2-1}{x+1}\frac{x+5}{5x-5}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x-1)\frac{x+5}{5x-5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x+5}{5}\end{aligned} $$ | |
① | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x+1}$. $$ \begin{aligned} \frac{x^2-1}{x+1} & =\frac{ \left( x-1 \right) \cdot \color{blue}{ \left( x+1 \right) }}{ 1 \cdot \color{blue}{ \left( x+1 \right) }} = \\[1ex] &= \frac{x-1}{1} =x-1 \end{aligned} $$ |
② | Step 1: Write $ x-1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} x-1 \cdot \frac{x+5}{5x-5} & \xlongequal{\text{Step 1}} \frac{x-1}{\color{red}{1}} \cdot \frac{x+5}{5x-5} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \color{blue}{ \left( x-1 \right) } }{ 1 } \cdot \frac{ x+5 }{ 5 \cdot \color{blue}{ \left( x-1 \right) } } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 }{ 1 } \cdot \frac{ x+5 }{ 5 } \xlongequal{\text{Step 4}} \frac{ 1 \cdot \left( x+5 \right) }{ 1 \cdot 5 } \xlongequal{\text{Step 5}} \frac{ x+5 }{ 5 } \end{aligned} $$ |