Tap the blue circles to see an explanation.
$$ \begin{aligned}(x^2-1)(x+6)(x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^3+6x^2-x-6)(x-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^4+4x^3-13x^2-4x+12\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x^2-1}\right) $ by each term in $ \left( x+6\right) $. $$ \left( \color{blue}{x^2-1}\right) \cdot \left( x+6\right) = x^3+6x^2-x-6 $$ |
② | Multiply each term of $ \left( \color{blue}{x^3+6x^2-x-6}\right) $ by each term in $ \left( x-2\right) $. $$ \left( \color{blue}{x^3+6x^2-x-6}\right) \cdot \left( x-2\right) = x^4-2x^3+6x^3-12x^2-x^2+2x-6x+12 $$ |
③ | Combine like terms: $$ x^4 \color{blue}{-2x^3} + \color{blue}{6x^3} \color{red}{-12x^2} \color{red}{-x^2} + \color{green}{2x} \color{green}{-6x} +12 = x^4+ \color{blue}{4x^3} \color{red}{-13x^2} \color{green}{-4x} +12 $$ |