Tap the blue circles to see an explanation.
$$ \begin{aligned}(x^2+3x+6)(5x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5x^3+x^2+15x^2+3x+30x+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x^3+16x^2+33x+6\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x^2+3x+6}\right) $ by each term in $ \left( 5x+1\right) $. $$ \left( \color{blue}{x^2+3x+6}\right) \cdot \left( 5x+1\right) = 5x^3+x^2+15x^2+3x+30x+6 $$ |
② | Combine like terms: $$ 5x^3+ \color{blue}{x^2} + \color{blue}{15x^2} + \color{red}{3x} + \color{red}{30x} +6 = 5x^3+ \color{blue}{16x^2} + \color{red}{33x} +6 $$ |