Tap the blue circles to see an explanation.
$$ \begin{aligned}xx-4x-(6x\cdot6x-10)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2-4x-(36x^2-10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2-4x-36x^2+10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-35x^2-4x+10\end{aligned} $$ | |
① | $$ x x = x^{1 + 1} = x^2 $$$$ 6 x \cdot 6 x = 36 x^{1 + 1} = 36 x^2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 36x^2-10 \right) = -36x^2+10 $$ |
③ | Combine like terms: $$ \color{blue}{x^2} -4x \color{blue}{-36x^2} +10 = \color{blue}{-35x^2} -4x+10 $$ |