Tap the blue circles to see an explanation.
$$ \begin{aligned}(w+8)(w-8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}w^2-8w+8w-64 \xlongequal{ } \\[1 em] & \xlongequal{ }w^2 -\cancel{8w}+ \cancel{8w}-64 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}w^2-64\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{w+8}\right) $ by each term in $ \left( w-8\right) $. $$ \left( \color{blue}{w+8}\right) \cdot \left( w-8\right) = w^2 -\cancel{8w}+ \cancel{8w}-64 $$ |
② | Combine like terms: $$ w^2 \, \color{blue}{ -\cancel{8w}} \,+ \, \color{blue}{ \cancel{8w}} \,-64 = w^2-64 $$ |