Tap the blue circles to see an explanation.
$$ \begin{aligned}(w-7)(w+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}w^2+3w-7w-21 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}w^2-4w-21\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{w-7}\right) $ by each term in $ \left( w+3\right) $. $$ \left( \color{blue}{w-7}\right) \cdot \left( w+3\right) = w^2+3w-7w-21 $$ |
② | Combine like terms: $$ w^2+ \color{blue}{3w} \color{blue}{-7w} -21 = w^2 \color{blue}{-4w} -21 $$ |