Tap the blue circles to see an explanation.
$$ \begin{aligned}w^2+7w+2-(32^2+6w+4)& \xlongequal{ }w^2+7w+2-(1024+6w+4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}w^2+7w+2-(6w+1028) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}w^2+7w+2-6w-1028 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}w^2+w-1026\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{1024} +6w+ \color{blue}{4} = 6w+ \color{blue}{1028} $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 6w+1028 \right) = -6w-1028 $$ |
③ | Combine like terms: $$ w^2+ \color{blue}{7w} + \color{red}{2} \color{blue}{-6w} \color{red}{-1028} = w^2+ \color{blue}{w} \color{red}{-1026} $$ |