Tap the blue circles to see an explanation.
$$ \begin{aligned}w^2+7w+2-(3^2+6w+4)& \xlongequal{ }w^2+7w+2-(9+6w+4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}w^2+7w+2-(6w+13) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}w^2+7w+2-6w-13 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}w^2+w-11\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{9} +6w+ \color{blue}{4} = 6w+ \color{blue}{13} $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 6w+13 \right) = -6w-13 $$ |
③ | Combine like terms: $$ w^2+ \color{blue}{7w} + \color{red}{2} \color{blue}{-6w} \color{red}{-13} = w^2+ \color{blue}{w} \color{red}{-11} $$ |