Tap the blue circles to see an explanation.
$$ \begin{aligned}(v+1)(4v+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4v^2+3v+4v+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4v^2+7v+3\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{v+1}\right) $ by each term in $ \left( 4v+3\right) $. $$ \left( \color{blue}{v+1}\right) \cdot \left( 4v+3\right) = 4v^2+3v+4v+3 $$ |
② | Combine like terms: $$ 4v^2+ \color{blue}{3v} + \color{blue}{4v} +3 = 4v^2+ \color{blue}{7v} +3 $$ |