Tap the blue circles to see an explanation.
$$ \begin{aligned}(n+6)(n-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}n^2-3n+6n-18 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}n^2+3n-18\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{n+6}\right) $ by each term in $ \left( n-3\right) $. $$ \left( \color{blue}{n+6}\right) \cdot \left( n-3\right) = n^2-3n+6n-18 $$ |
② | Combine like terms: $$ n^2 \color{blue}{-3n} + \color{blue}{6n} -18 = n^2+ \color{blue}{3n} -18 $$ |