Tap the blue circles to see an explanation.
$$ \begin{aligned}(m+3)(m^2+4m+7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}m^3+4m^2+7m+3m^2+12m+21 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}m^3+7m^2+19m+21\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{m+3}\right) $ by each term in $ \left( m^2+4m+7\right) $. $$ \left( \color{blue}{m+3}\right) \cdot \left( m^2+4m+7\right) = m^3+4m^2+7m+3m^2+12m+21 $$ |
② | Combine like terms: $$ m^3+ \color{blue}{4m^2} + \color{red}{7m} + \color{blue}{3m^2} + \color{red}{12m} +21 = m^3+ \color{blue}{7m^2} + \color{red}{19m} +21 $$ |