Tap the blue circles to see an explanation.
$$ \begin{aligned}(k+4)(3k+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3k^2+2k+12k+8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3k^2+14k+8\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{k+4}\right) $ by each term in $ \left( 3k+2\right) $. $$ \left( \color{blue}{k+4}\right) \cdot \left( 3k+2\right) = 3k^2+2k+12k+8 $$ |
② | Combine like terms: $$ 3k^2+ \color{blue}{2k} + \color{blue}{12k} +8 = 3k^2+ \color{blue}{14k} +8 $$ |