$$ \begin{aligned}(k+2)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}k^2+4k+4\end{aligned} $$ | |
① | Find $ \left(k+2\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ k } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(k+2\right)^2 = \color{blue}{k^2} +2 \cdot k \cdot 2 + \color{red}{2^2} = k^2+4k+4\end{aligned} $$ |