Tap the blue circles to see an explanation.
$$ \begin{aligned}(k+1)(2k+1)(2k+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2k^2+k+2k+1)(2k+3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(2k^2+3k+1)(2k+3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4k^3+6k^2+6k^2+9k+2k+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}4k^3+12k^2+11k+3\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{k+1}\right) $ by each term in $ \left( 2k+1\right) $. $$ \left( \color{blue}{k+1}\right) \cdot \left( 2k+1\right) = 2k^2+k+2k+1 $$ |
② | Combine like terms: $$ 2k^2+ \color{blue}{k} + \color{blue}{2k} +1 = 2k^2+ \color{blue}{3k} +1 $$ |
③ | Multiply each term of $ \left( \color{blue}{2k^2+3k+1}\right) $ by each term in $ \left( 2k+3\right) $. $$ \left( \color{blue}{2k^2+3k+1}\right) \cdot \left( 2k+3\right) = 4k^3+6k^2+6k^2+9k+2k+3 $$ |
④ | Combine like terms: $$ 4k^3+ \color{blue}{6k^2} + \color{blue}{6k^2} + \color{red}{9k} + \color{red}{2k} +3 = 4k^3+ \color{blue}{12k^2} + \color{red}{11k} +3 $$ |