Tap the blue circles to see an explanation.
$$ \begin{aligned}(g-9x)(g+9x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}g^2+9gx-9gx-81x^2 \xlongequal{ } \\[1 em] & \xlongequal{ }g^2+ \cancel{9gx} -\cancel{9gx}-81x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}g^2-81x^2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{g-9x}\right) $ by each term in $ \left( g+9x\right) $. $$ \left( \color{blue}{g-9x}\right) \cdot \left( g+9x\right) = g^2+ \cancel{9gx} -\cancel{9gx}-81x^2 $$ |
② | Combine like terms: $$ g^2+ \, \color{blue}{ \cancel{9gx}} \, \, \color{blue}{ -\cancel{9gx}} \,-81x^2 = g^2-81x^2 $$ |