Tap the blue circles to see an explanation.
$$ \begin{aligned}(d^2+3)(d^2+2d+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}d^4+2d^3+d^2+3d^2+6d+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}d^4+2d^3+4d^2+6d+3\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{d^2+3}\right) $ by each term in $ \left( d^2+2d+1\right) $. $$ \left( \color{blue}{d^2+3}\right) \cdot \left( d^2+2d+1\right) = d^4+2d^3+d^2+3d^2+6d+3 $$ |
② | Combine like terms: $$ d^4+2d^3+ \color{blue}{d^2} + \color{blue}{3d^2} +6d+3 = d^4+2d^3+ \color{blue}{4d^2} +6d+3 $$ |