Tap the blue circles to see an explanation.
$$ \begin{aligned}(c+1)(c^2+3c+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}c^3+3c^2+2c+c^2+3c+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}c^3+4c^2+5c+2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{c+1}\right) $ by each term in $ \left( c^2+3c+2\right) $. $$ \left( \color{blue}{c+1}\right) \cdot \left( c^2+3c+2\right) = c^3+3c^2+2c+c^2+3c+2 $$ |
② | Combine like terms: $$ c^3+ \color{blue}{3c^2} + \color{red}{2c} + \color{blue}{c^2} + \color{red}{3c} +2 = c^3+ \color{blue}{4c^2} + \color{red}{5c} +2 $$ |