Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{b^2+3b}{b^2-2b+1}-\frac{4}{b^2-2b+1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{b^2+3b-4}{b^2-2b+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{b+4}{b-1}\end{aligned} $$ | |
① | To subtract expressions with the same denominators, we subtract the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{b^2+3b}{b^2-2b+1} - \frac{4}{b^2-2b+1} & = \frac{b^2+3b}{\color{blue}{b^2-2b+1}} - \frac{4}{\color{blue}{b^2-2b+1}} = \\[1ex] &=\frac{ b^2+3b - 4 }{ \color{blue}{ b^2-2b+1 }} \end{aligned} $$ |
② | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{b-1}$. $$ \begin{aligned} \frac{b^2+3b-4}{b^2-2b+1} & =\frac{ \left( b+4 \right) \cdot \color{blue}{ \left( b-1 \right) }}{ \left( b-1 \right) \cdot \color{blue}{ \left( b-1 \right) }} = \\[1ex] &= \frac{b+4}{b-1} \end{aligned} $$ |