Tap the blue circles to see an explanation.
$$ \begin{aligned}(az^2-2z+10)(3z+12)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3az^3+12az^2-6z^2-24z+30z+120 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3az^3+12az^2-6z^2+6z+120\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{az^2-2z+10}\right) $ by each term in $ \left( 3z+12\right) $. $$ \left( \color{blue}{az^2-2z+10}\right) \cdot \left( 3z+12\right) = 3az^3+12az^2-6z^2-24z+30z+120 $$ |
② | Combine like terms: $$ 3az^3+12az^2-6z^2 \color{blue}{-24z} + \color{blue}{30z} +120 = 3az^3+12az^2-6z^2+ \color{blue}{6z} +120 $$ |