Tap the blue circles to see an explanation.
$$ \begin{aligned}(a+b)^4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}a^4+4a^3b+6a^2b^2+4ab^3+b^4\end{aligned} $$ | |
① | $$ (a+b)^4 = (a+b)^2 \cdot (a+b)^2 $$ |
② | Find $ \left(a+b\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ a } $ and $ B = \color{red}{ b }$. $$ \begin{aligned}\left(a+b\right)^2 = \color{blue}{a^2} +2 \cdot a \cdot b + \color{red}{b^2} = a^2+2ab+b^2\end{aligned} $$ |
③ | Multiply each term of $ \left( \color{blue}{a^2+2ab+b^2}\right) $ by each term in $ \left( a^2+2ab+b^2\right) $. $$ \left( \color{blue}{a^2+2ab+b^2}\right) \cdot \left( a^2+2ab+b^2\right) = \\ = a^4+2a^3b+a^2b^2+2a^3b+4a^2b^2+2ab^3+a^2b^2+2ab^3+b^4 $$ |
④ | Combine like terms: $$ a^4+ \color{blue}{2a^3b} + \color{red}{a^2b^2} + \color{blue}{2a^3b} + \color{green}{4a^2b^2} + \color{orange}{2ab^3} + \color{green}{a^2b^2} + \color{orange}{2ab^3} +b^4 = \\ = a^4+ \color{blue}{4a^3b} + \color{green}{6a^2b^2} + \color{orange}{4ab^3} +b^4 $$ |