Tap the blue circles to see an explanation.
$$ \begin{aligned}(a+b)(az-ab)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}a^2z-a^2b+abz-ab^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-a^2b+a^2z-ab^2+abz\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{a+b}\right) $ by each term in $ \left( az-ab\right) $. $$ \left( \color{blue}{a+b}\right) \cdot \left( az-ab\right) = a^2z-a^2b+abz-ab^2 $$ |
② | Combine like terms: $$ -a^2b+a^2z-ab^2+abz = -a^2b+a^2z-ab^2+abz $$ |