Tap the blue circles to see an explanation.
$$ \begin{aligned}(a+10)(a+11)(a+12)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(1a^2+11a+10a+110)(a+12) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(1a^2+21a+110)(a+12) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}a^3+12a^2+21a^2+252a+110a+1320 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}a^3+33a^2+362a+1320\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{a+10}\right) $ by each term in $ \left( a+11\right) $. $$ \left( \color{blue}{a+10}\right) \cdot \left( a+11\right) = a^2+11a+10a+110 $$ |
② | Combine like terms: $$ a^2+ \color{blue}{11a} + \color{blue}{10a} +110 = a^2+ \color{blue}{21a} +110 $$ |
③ | Multiply each term of $ \left( \color{blue}{a^2+21a+110}\right) $ by each term in $ \left( a+12\right) $. $$ \left( \color{blue}{a^2+21a+110}\right) \cdot \left( a+12\right) = a^3+12a^2+21a^2+252a+110a+1320 $$ |
④ | Combine like terms: $$ a^3+ \color{blue}{12a^2} + \color{blue}{21a^2} + \color{red}{252a} + \color{red}{110a} +1320 = a^3+ \color{blue}{33a^2} + \color{red}{362a} +1320 $$ |