Tap the blue circles to see an explanation.
$$ \begin{aligned}(9x+2)(x\cdot2+5x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(9x+2)(7x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}63x^2+9x+14x+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}63x^2+23x+2\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{2x} + \color{blue}{5x} +1 = \color{blue}{7x} +1 $$ |
② | Multiply each term of $ \left( \color{blue}{9x+2}\right) $ by each term in $ \left( 7x+1\right) $. $$ \left( \color{blue}{9x+2}\right) \cdot \left( 7x+1\right) = 63x^2+9x+14x+2 $$ |
③ | Combine like terms: $$ 63x^2+ \color{blue}{9x} + \color{blue}{14x} +2 = 63x^2+ \color{blue}{23x} +2 $$ |