Tap the blue circles to see an explanation.
$$ \begin{aligned}(9x^2+8)\cdot(8-\frac{4}{x^2})+(8x+7+\frac{4}{x})\cdot18x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(9x^2+8)\frac{8x^2-4}{x^2}+\frac{8x^2+7x+4}{x}\cdot18x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{72x^4+28x^2-32}{x^2}+\frac{144x^3+126x^2+72x}{x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{216x^5+126x^4+100x^3-32x}{x^3}\end{aligned} $$ | |
① | Step 1: Write $ 8 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Write $ 8x+7 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ 9x^2+8 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 9x^2+8 \cdot \frac{8x^2-4}{x^2} & \xlongequal{\text{Step 1}} \frac{9x^2+8}{\color{red}{1}} \cdot \frac{8x^2-4}{x^2} \xlongequal{\text{Step 2}} \frac{ \left( 9x^2+8 \right) \cdot \left( 8x^2-4 \right) }{ 1 \cdot x^2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 72x^4-36x^2+64x^2-32 }{ x^2 } = \frac{72x^4+28x^2-32}{x^2} \end{aligned} $$ |
④ | Step 1: Write $ 18x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{8x^2+7x+4}{x} \cdot 18x & \xlongequal{\text{Step 1}} \frac{8x^2+7x+4}{x} \cdot \frac{18x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 8x^2+7x+4 \right) \cdot 18x }{ x \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 144x^3+126x^2+72x }{ x } \end{aligned} $$ |
⑤ | To add raitonal expressions, both fractions must have the same denominator. |