Tap the blue circles to see an explanation.
$$ \begin{aligned}(8-8x^2)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}64-128x^2+64x^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}64x^4-128x^2+64\end{aligned} $$ | |
① | Find $ \left(8-8x^2\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 8 } $ and $ B = \color{red}{ 8x^2 }$. $$ \begin{aligned}\left(8-8x^2\right)^2 = \color{blue}{8^2} -2 \cdot 8 \cdot 8x^2 + \color{red}{\left( 8x^2 \right)^2} = 64-128x^2+64x^4\end{aligned} $$ |
② | Combine like terms: $$ 64x^4-128x^2+64 = 64x^4-128x^2+64 $$ |