Tap the blue circles to see an explanation.
$$ \begin{aligned}(8-\frac{1}{8}x^3)(4+\frac{1}{16}x^3)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(8-\frac{x^3}{8})(4+\frac{1}{16}x^3)^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-x^3+64}{8}(4+\frac{1}{16}x^3)^2\end{aligned} $$ | |
① | Step 1: Write $ x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{8} \cdot x^3 & \xlongequal{\text{Step 1}} \frac{1}{8} \cdot \frac{x^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^3 }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^3 }{ 8 } \end{aligned} $$ |
② | Step 1: Write $ 8 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |