Tap the blue circles to see an explanation.
$$ \begin{aligned}(7x-8)(4x+2)(x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(28x^2+14x-32x-16)(x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(28x^2-18x-16)(x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}28x^3-84x^2-18x^2+54x-16x+48 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}28x^3-102x^2+38x+48\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{7x-8}\right) $ by each term in $ \left( 4x+2\right) $. $$ \left( \color{blue}{7x-8}\right) \cdot \left( 4x+2\right) = 28x^2+14x-32x-16 $$ |
② | Combine like terms: $$ 28x^2+ \color{blue}{14x} \color{blue}{-32x} -16 = 28x^2 \color{blue}{-18x} -16 $$ |
③ | Multiply each term of $ \left( \color{blue}{28x^2-18x-16}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{28x^2-18x-16}\right) \cdot \left( x-3\right) = 28x^3-84x^2-18x^2+54x-16x+48 $$ |
④ | Combine like terms: $$ 28x^3 \color{blue}{-84x^2} \color{blue}{-18x^2} + \color{red}{54x} \color{red}{-16x} +48 = 28x^3 \color{blue}{-102x^2} + \color{red}{38x} +48 $$ |