Tap the blue circles to see an explanation.
$$ \begin{aligned}(7g+3)(-g-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-7g^2-21g-3g-9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-7g^2-24g-9\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{7g+3}\right) $ by each term in $ \left( -g-3\right) $. $$ \left( \color{blue}{7g+3}\right) \cdot \left( -g-3\right) = -7g^2-21g-3g-9 $$ |
② | Combine like terms: $$ -7g^2 \color{blue}{-21g} \color{blue}{-3g} -9 = -7g^2 \color{blue}{-24g} -9 $$ |