Tap the blue circles to see an explanation.
$$ \begin{aligned}(6x-9)(2x+1)(x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(12x^2+6x-18x-9)(x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(12x^2-12x-9)(x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}12x^3-60x^2-12x^2+60x-9x+45 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}12x^3-72x^2+51x+45\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{6x-9}\right) $ by each term in $ \left( 2x+1\right) $. $$ \left( \color{blue}{6x-9}\right) \cdot \left( 2x+1\right) = 12x^2+6x-18x-9 $$ |
② | Combine like terms: $$ 12x^2+ \color{blue}{6x} \color{blue}{-18x} -9 = 12x^2 \color{blue}{-12x} -9 $$ |
③ | Multiply each term of $ \left( \color{blue}{12x^2-12x-9}\right) $ by each term in $ \left( x-5\right) $. $$ \left( \color{blue}{12x^2-12x-9}\right) \cdot \left( x-5\right) = 12x^3-60x^2-12x^2+60x-9x+45 $$ |
④ | Combine like terms: $$ 12x^3 \color{blue}{-60x^2} \color{blue}{-12x^2} + \color{red}{60x} \color{red}{-9x} +45 = 12x^3 \color{blue}{-72x^2} + \color{red}{51x} +45 $$ |