Tap the blue circles to see an explanation.
$$ \begin{aligned}(6x^4-30x^3+18x^2)(x^3-9x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x^7-54x^5-30x^6+270x^4+18x^5-162x^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x^7-30x^6-36x^5+270x^4-162x^3\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{6x^4-30x^3+18x^2}\right) $ by each term in $ \left( x^3-9x\right) $. $$ \left( \color{blue}{6x^4-30x^3+18x^2}\right) \cdot \left( x^3-9x\right) = 6x^7-54x^5-30x^6+270x^4+18x^5-162x^3 $$ |
② | Combine like terms: $$ 6x^7 \color{blue}{-54x^5} -30x^6+270x^4+ \color{blue}{18x^5} -162x^3 = 6x^7-30x^6 \color{blue}{-36x^5} +270x^4-162x^3 $$ |