Tap the blue circles to see an explanation.
$$ \begin{aligned}(6+2x)\cdot(8+2x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}48+12x+16x+4x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2+28x+48\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{6+2x}\right) $ by each term in $ \left( 8+2x\right) $. $$ \left( \color{blue}{6+2x}\right) \cdot \left( 8+2x\right) = 48+12x+16x+4x^2 $$ |
② | Combine like terms: $$ 48+ \color{blue}{12x} + \color{blue}{16x} +4x^2 = 4x^2+ \color{blue}{28x} +48 $$ |