Tap the blue circles to see an explanation.
$$ \begin{aligned}(5x+2)(5x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}25x^2-10x+10x-4 \xlongequal{ } \\[1 em] & \xlongequal{ }25x^2 -\cancel{10x}+ \cancel{10x}-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}25x^2-4\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{5x+2}\right) $ by each term in $ \left( 5x-2\right) $. $$ \left( \color{blue}{5x+2}\right) \cdot \left( 5x-2\right) = 25x^2 -\cancel{10x}+ \cancel{10x}-4 $$ |
② | Combine like terms: $$ 25x^2 \, \color{blue}{ -\cancel{10x}} \,+ \, \color{blue}{ \cancel{10x}} \,-4 = 25x^2-4 $$ |