Tap the blue circles to see an explanation.
$$ \begin{aligned}(5x^3+4x-2)(x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5x^4+5x^3+4x^2+4x-2x-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x^4+5x^3+4x^2+2x-2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{5x^3+4x-2}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{5x^3+4x-2}\right) \cdot \left( x+1\right) = 5x^4+5x^3+4x^2+4x-2x-2 $$ |
② | Combine like terms: $$ 5x^4+5x^3+4x^2+ \color{blue}{4x} \color{blue}{-2x} -2 = 5x^4+5x^3+4x^2+ \color{blue}{2x} -2 $$ |