Tap the blue circles to see an explanation.
$$ \begin{aligned}(5x^2+6x-12)(x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5x^3-25x^2+6x^2-30x-12x+60 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x^3-19x^2-42x+60\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{5x^2+6x-12}\right) $ by each term in $ \left( x-5\right) $. $$ \left( \color{blue}{5x^2+6x-12}\right) \cdot \left( x-5\right) = 5x^3-25x^2+6x^2-30x-12x+60 $$ |
② | Combine like terms: $$ 5x^3 \color{blue}{-25x^2} + \color{blue}{6x^2} \color{red}{-30x} \color{red}{-12x} +60 = 5x^3 \color{blue}{-19x^2} \color{red}{-42x} +60 $$ |