Tap the blue circles to see an explanation.
$$ \begin{aligned}(5+x)\cdot(5+x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}25+5x+5x+x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+10x+25\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{5+x}\right) $ by each term in $ \left( 5+x\right) $. $$ \left( \color{blue}{5+x}\right) \cdot \left( 5+x\right) = 25+5x+5x+x^2 $$ |
② | Combine like terms: $$ 25+ \color{blue}{5x} + \color{blue}{5x} +x^2 = x^2+ \color{blue}{10x} +25 $$ |