Tap the blue circles to see an explanation.
$$ \begin{aligned}(5k+3)(5k-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}25k^2-15k+15k-9 \xlongequal{ } \\[1 em] & \xlongequal{ }25k^2 -\cancel{15k}+ \cancel{15k}-9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}25k^2-9\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{5k+3}\right) $ by each term in $ \left( 5k-3\right) $. $$ \left( \color{blue}{5k+3}\right) \cdot \left( 5k-3\right) = 25k^2 -\cancel{15k}+ \cancel{15k}-9 $$ |
② | Combine like terms: $$ 25k^2 \, \color{blue}{ -\cancel{15k}} \,+ \, \color{blue}{ \cancel{15k}} \,-9 = 25k^2-9 $$ |