Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{56m^3-32m\cdot2+8m}{8}m& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{56m^3-56m}{8}m \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{56m^4-56m^2}{8}\end{aligned} $$ | |
① | $$ 56m^3 \color{blue}{-64m} + \color{blue}{8m} = 56m^3 \color{blue}{-56m} $$ |
② | Step 1: Write $ m $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{56m^3-56m}{8} \cdot m & \xlongequal{\text{Step 1}} \frac{56m^3-56m}{8} \cdot \frac{m}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 56m^3-56m \right) \cdot m }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 56m^4-56m^2 }{ 8 } \end{aligned} $$ |