Tap the blue circles to see an explanation.
$$ \begin{aligned}(4y+3)(2y-7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8y^2-28y+6y-21 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8y^2-22y-21\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4y+3}\right) $ by each term in $ \left( 2y-7\right) $. $$ \left( \color{blue}{4y+3}\right) \cdot \left( 2y-7\right) = 8y^2-28y+6y-21 $$ |
② | Combine like terms: $$ 8y^2 \color{blue}{-28y} + \color{blue}{6y} -21 = 8y^2 \color{blue}{-22y} -21 $$ |