Tap the blue circles to see an explanation.
$$ \begin{aligned}(4x+3)(8x^2-6x+9)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}32x^3-24x^2+36x+24x^2-18x+27 \xlongequal{ } \\[1 em] & \xlongequal{ }32x^3 -\cancel{24x^2}+36x+ \cancel{24x^2}-18x+27 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}32x^3+18x+27\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4x+3}\right) $ by each term in $ \left( 8x^2-6x+9\right) $. $$ \left( \color{blue}{4x+3}\right) \cdot \left( 8x^2-6x+9\right) = 32x^3 -\cancel{24x^2}+36x+ \cancel{24x^2}-18x+27 $$ |
② | Combine like terms: $$ 32x^3 \, \color{blue}{ -\cancel{24x^2}} \,+ \color{green}{36x} + \, \color{blue}{ \cancel{24x^2}} \, \color{green}{-18x} +27 = 32x^3+ \color{green}{18x} +27 $$ |