Tap the blue circles to see an explanation.
$$ \begin{aligned}(4x+3)(-x^2-5x+9)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-4x^3-20x^2+36x-3x^2-15x+27 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4x^3-23x^2+21x+27\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4x+3}\right) $ by each term in $ \left( -x^2-5x+9\right) $. $$ \left( \color{blue}{4x+3}\right) \cdot \left( -x^2-5x+9\right) = -4x^3-20x^2+36x-3x^2-15x+27 $$ |
② | Combine like terms: $$ -4x^3 \color{blue}{-20x^2} + \color{red}{36x} \color{blue}{-3x^2} \color{red}{-15x} +27 = -4x^3 \color{blue}{-23x^2} + \color{red}{21x} +27 $$ |