Tap the blue circles to see an explanation.
$$ \begin{aligned}(4x-5y)(4x+5y)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16x^2+20xy-20xy-25y^2 \xlongequal{ } \\[1 em] & \xlongequal{ }16x^2+ \cancel{20xy} -\cancel{20xy}-25y^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}16x^2-25y^2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4x-5y}\right) $ by each term in $ \left( 4x+5y\right) $. $$ \left( \color{blue}{4x-5y}\right) \cdot \left( 4x+5y\right) = 16x^2+ \cancel{20xy} -\cancel{20xy}-25y^2 $$ |
② | Combine like terms: $$ 16x^2+ \, \color{blue}{ \cancel{20xy}} \, \, \color{blue}{ -\cancel{20xy}} \,-25y^2 = 16x^2-25y^2 $$ |