Tap the blue circles to see an explanation.
$$ \begin{aligned}(4x-3)(6x^2+2x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}24x^3+8x^2-20x-18x^2-6x+15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}24x^3-10x^2-26x+15\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4x-3}\right) $ by each term in $ \left( 6x^2+2x-5\right) $. $$ \left( \color{blue}{4x-3}\right) \cdot \left( 6x^2+2x-5\right) = 24x^3+8x^2-20x-18x^2-6x+15 $$ |
② | Combine like terms: $$ 24x^3+ \color{blue}{8x^2} \color{red}{-20x} \color{blue}{-18x^2} \color{red}{-6x} +15 = 24x^3 \color{blue}{-10x^2} \color{red}{-26x} +15 $$ |