Tap the blue circles to see an explanation.
$$ \begin{aligned}4x^3-2x-2(4x^3-2x^4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^3-2x-(8x^3-4x^4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^3-2x-8x^3+4x^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x^4-4x^3-2x\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( 4x^3-2x^4\right) $ $$ \color{blue}{2} \cdot \left( 4x^3-2x^4\right) = 8x^3-4x^4 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 8x^3-4x^4 \right) = -8x^3+4x^4 $$ |
③ | Combine like terms: $$ \color{blue}{4x^3} -2x \color{blue}{-8x^3} +4x^4 = 4x^4 \color{blue}{-4x^3} -2x $$ |