Tap the blue circles to see an explanation.
$$ \begin{aligned}(4x^2+8x-2)(2x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8x^3-12x^2+16x^2-24x-4x+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8x^3+4x^2-28x+6\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4x^2+8x-2}\right) $ by each term in $ \left( 2x-3\right) $. $$ \left( \color{blue}{4x^2+8x-2}\right) \cdot \left( 2x-3\right) = 8x^3-12x^2+16x^2-24x-4x+6 $$ |
② | Combine like terms: $$ 8x^3 \color{blue}{-12x^2} + \color{blue}{16x^2} \color{red}{-24x} \color{red}{-4x} +6 = 8x^3+ \color{blue}{4x^2} \color{red}{-28x} +6 $$ |