Tap the blue circles to see an explanation.
$$ \begin{aligned}(4v+3)(3v-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}12v^2-16v+9v-12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}12v^2-7v-12\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4v+3}\right) $ by each term in $ \left( 3v-4\right) $. $$ \left( \color{blue}{4v+3}\right) \cdot \left( 3v-4\right) = 12v^2-16v+9v-12 $$ |
② | Combine like terms: $$ 12v^2 \color{blue}{-16v} + \color{blue}{9v} -12 = 12v^2 \color{blue}{-7v} -12 $$ |