Tap the blue circles to see an explanation.
$$ \begin{aligned}(4n+1)(5n+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}20n^2+16n+5n+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}20n^2+21n+4\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4n+1}\right) $ by each term in $ \left( 5n+4\right) $. $$ \left( \color{blue}{4n+1}\right) \cdot \left( 5n+4\right) = 20n^2+16n+5n+4 $$ |
② | Combine like terms: $$ 20n^2+ \color{blue}{16n} + \color{blue}{5n} +4 = 20n^2+ \color{blue}{21n} +4 $$ |